Vassiliev Invariants and Knots modulo Pure Braid Subgroups

نویسنده

  • Theodore B. Stanford
چکیده

We show that two knots have matching Vassiliev invariants of order less than n if and only if they are equivalent modulo the nth group of the lower central series of some pure braid group, thus characterizing Vassiliev’s knot invariants in terms of the structure of the braid groups. We also prove some results about knots modulo the nth derived subgroups of the pure braid groups, and about knots modulo braid subgroups in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometric Characterization of Vassiliev Invariants

It is a well-known paradigm to consider Vassiliev invariants as polynomials on the set of knots. We prove the following characterization: a rational knot invariant is a Vassiliev invariant of degree ≤ m if and only if it is a polynomial of degree ≤ m on every geometric sequence of knots. Here a sequence Kz with z ∈ Z is called geometric if the knots Kz coincide outside a ball B, inside of which...

متن کامل

The Braid Index and the Growth of Vassiliev Invariants

We use the new approach of braiding sequences to prove exponential upper bounds for the number of Vassiliev invariants on knots with bounded braid index, bounded bridge number and arborescent knots. We prove, that any Vassiliev invariant of degree k is determined by its values on knots with braid index at most k+1.

متن کامل

2 Ju l 1 99 9 BRAID COMMUTATORS AND DELTA FINITE - TYPE INVARIANTS

Delta finite-type invariants are defined analogously to finite-type invariants, using delta moves instead of crossing changes. We show that they are closely related to the lower central series of the commutator subgroup of the pure braid group. 0. INTRODUCTION We consider in this paper delta finite-type invariants of knots and links (∆FT invari-ants). In the case of links, these are the same in...

متن کامل

Finite Type Knot Invariants Based on the Band-pass and Doubled Delta Moves

We study generalizations of finite-type knot invariants obtained by replacing the crossing change in the Vassiliev skein relation by some other local move. There are several ways of formalizing the notion of a local move. Representing knots as closed braids, one can define local moves as modifications by elements of some subgroup G of the pure braid group P∞ on an infinite number of strands. We...

متن کامل

Finite Type Invariants of Knots via Their Seifert Matrices∗

We define a filtration on the vector space spanned by Seifert matrices of knots related to Vassiliev’s filtration on the space of knots. Further we show that the invariants of knots derived from the filtration can be expressed by coefficients of the Alexander polynomial. The theory of finite type invariants (Vassiliev invariants) for knots was first introduced by V. Vassiliev [13] and reformula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998